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INTRODUCTION

Since the prediction of compressible turbulent boundary-layer
flows is often based on some empirical formulation, it is under-
standable that there is a need for complete and detailed experimental
data upon which new theories can be tested. Although a fair number
of experimental zero-pressure-gradient studies have been reported in
thie past, only a limited number of these studies present data of the
accuracy or completeness necessary for analytical and numerical
evaluation. For this reason, the experimental approach at the
Naval Ordnance Laboratory (NOL) has been to stress for complete and
systematic measurement of as many flow parameters as permissible.
These include the measurement of pressure and temperature profiles,
friction drag and heat transfer. The accuracy of the data is
enhanced by the existence of a thick nozzle-wall boundary layer which
can be probed with a variety of instrumentation of the sophistication
necessary for high resolution. The data are also obtained system-
atically in terms of having a range of Reynolds number conditions
and, for this investigation, a range of heat-transfer conditions.

The material presented in this report, although similar in
description to the earlier data of Lee, Yanta, and Leonas (Ref. 1)
constitutes a complete rerunning of the earlier test program with
improved instrumentation. Furthermore, the new data are more
comprehensive in that a wider range of heat-transfer conditions and
probing stations are included. Consequently, the data presented in
this report supersede the earlier data of NOLTR 69-106.

FACILITY AND TEST CONDITIONS

The experiments were performed in the NOL Boundary Layer Channel
(Ref. 2) shown in Figure 1. The two-dimensional supersonic half-
nozzle has for one wall a flat copper test plate, 2.69 meters long,
along which the boundary-layer measurements were made. The opposite
wall consists of an adjustable flexible plate which was contoured
to produce a Mach 4.9 zero-pressure-gradient flow over the flat test
plate beginning at 1.397 meters downstream from the nozzle throat.
The nozzle contour was designed by using a method of characteristics
computer program and correcting for the boundary-layer displacement
thickness. Axial Pitot-pressure surveys showed the flow to be shock
free with a variation in the free-stream Mach number of no more than
+ 1.0 percent within the uniform-flow test region.

The two-dimensionality of the flow in the facility has bee.:
investigated and is discussed in References 1 and 3. The general
conclusion reached was that for a central region, approximately 15
centimeters wide and running the length of the test plate, the flow
did not exhibit any effects due to cross flow.

Boundary-layer data were obtained at five instrumentation ports
along tne flat test plate corresponding to 1.524, 1.778, 1.981, 2.134
and 2.286 meters fron the nozzle throat. These ports provided for
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the introduction of a traversing probe mechanism, a skin-friction
balance or heat-transfer gage.

Tests were conducted at tunnel supply pressures between 1 and
10 atmospheres, at unit atmosphere increments for friction and heat
transfer and at 1, Sand 10 atmospheres for profile measurements.
Nominal supply temperatures corresponded to 336°K for the adiabatic-
wall case and 423°K for the moderate- and severe-heat-transfer
conditions. The wall temperature downstream of the throat region was
controlled by cooling the copper test plate with water for the
adiabatic wall and moderate-heat-transfer studies and with liquid
nitrogen for the severe-heat-transfer case. These test conditions
provided a nominal range of momentum thickness Reynolds number from
7,000 to 58,000 at wall-to-adiabatic-wall temperature ratios of 1.0,
0.8, and 0.25. Typical boundary-layer thicknesses ranged from 5 to
9 centimeters which enabled detailed probing of the boundary layer
into the sublayer.

INSTRUMENTATION

Boundary-layer profile survevs were made by simultaneously
traversing a Pitot pressure probe and stagnation temperature probe
through the boundary layer in a double-probe holder configuration as
shown in Figures 2 and 3. Both probes were aligned with the probe
tips located 7.6 centimeters upstream of the center of the instru-
mentation port. The separation distance between the probe tips was
2.54 centimeters, a sufficient distance to eliminate probe-to-probe
interference. Each traverse was made from the free stream towards
the plate with a maximum movement of 1l centimeters. Data were
recorded with the probes at rest and only when the probe pressure
and temperafl ire were observed to have reached equilibrium conditions.
The data-acquisition system simultaneously recorded seven channels of
profile data on digital voltmeters and converted the information
directly to a computer card output.

Boundary-layer Pitot-pressure profiles were obtained using a
flattened Pitot probe with a rectangular 0.076 x 2.54 millimeter
inlet. Due to the small opening of the probe and its use near the
wall, two corrections to the Pitot-pressure data were incorporated
in the data reduction.

Since the air density in the inner region of the boundary layer
can be low and since the Pitot probe opening is small, the ratio of
the mean free path of the gas -0 the probe opening can be of a
sufficiently large value so as to place the gas dynamics in the slip
flow regime. Since viscous-flow interaction corrections were not
available for the flattened probe geometry used, a separate calibration
of the probe was conducted in a low-density wind tunnel for Mach
numbers between 0.1 and 0.4 and Keynolds numbers (based on probe
inlat height) between 0.5 and 50. The resulting probe correction is
shown in Figure 4 with the corresponding polynomial curve fit given
in Appendix A. It should be noted that this correction becomes
significant only in the inner portion of the low Reynolds number profiles.
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friction drag and heat transfer. The accuracy of the data is
enhanced by the existence of a thick nozzle-wall boundary layer which
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The material presented in this report, although similar in
description to the earlier data of Lee, Yanta, and Leonas (Ref. 1)
constitutes a complete rerunning of the earlier test program with
improved instrumentation. Furthermore, the new data are more
comprehensive in that a wider range of heat-transfer conditions and
prcbing stations are included. Consequently, the data presented in
this report supersede the earlier data of NOLTR 69-106.

FACILITY AND TEST CONDITIONS

The experiments were performed in the NOL Boundary Layer Channel
(Ref. 2) shown in Figure 1. The two-dimensional supersonic half-
nozzle has for one wall a flat copper test plate, 2.69 meters long,
along which the boundary-layer measurements were made. The opposite
wall consists of an adjustable flexible plate which was contoured
to produce a Mach 4.9 zero-pressure-gradient flow over the flat test
plate beginning at 1.397 meters downstream from the nozzle throat.
The nozzle contour was designed by using a method of characteristics
computer program and correcting for the boundary-layer displacement
thickness., Axial Pitot-pressure surveys showed the flow to be shock
free with a variation in the free-stream Mach number of no more than
t+ 1.0 percent within the uniform-flow test region.

The two-dimensionality of the flow in t..e facility has been
investigated and is discussed in References 1 and 3. The general
conclusion reached was that for a central region, approximately 15
centimeters wide and running the length of the test plate, the flow
did not exhibit any effects due to cross flow.

Boundary~-layer data were obtained at five instrumentation ports
along the flat test plate corresponding to 1.524, 1.778, 1.981, 2.134
and 2.286 meters from the nozzle throat. These ports provided for

EEIPRPIEE: 21 e g

PR ——




NOLTR 72-232

the introduction of a traversing probe mechanism, a skin-friction
balance or heat-transfer gage.

Tests were conducted at tunnel supply pressures between 1 and
10 atmospheres, at unit atmosphere increments for friction and heat
transfer and at 1, 5and 10 atmospheres for profile measurements.
Nominal supply temperatures corresponded to 336°K for the adiabatic-
wall case and 423°K for the moderate- and severe-heat-transfer
conditions. The wall temperature downstream of the throat region was
controlled by cooling the copper test plate with water for the
adiabatic wall and moderate-heat-transfer studies and with liquid
nitrogen for the severe-heat-transfer case. These test conditions
provided a nominal range of momentum thickness Reynolds number from
7,000 to 58,000 at wall-to-adiabatic-wall temperature ratios of 1.0,
0.8, and 0. 25. Typical boundary-layer thicknesses ranged from 5 to
9 centimeters which enabled detailed probing of the boundary layer
into the sublayer.

INSTRUMENTATION

Boundary-layer profile surveys were made by simultaneously
traversing a Pitot pressure probe and stagnation temperature probe
through the boundary layer in a double-probe holder configuration as
shown in Figures 2 and 3. DBoth probes were aligned with the probe
tips located 7.6 centimeters upstream of the center of the instru-
mentation port. The separation distance between the probe tips was
2.54 centimeters, a sufficient distance to eliminate probe-to-probe
interference. Each traverse was made from the free stream towards
the plate with a maximum movement of 1l centimeters. Data were
recorded with the probes at rest and only when the probe pressure
and temperature were observed to have reached equilibrium conditions.
The data~acquisition system simultaneously recorded seven channels of
profile data on digital voltmeters and converted the information
directly to a computer card output.

Boundary-layer Pitot-pressure profiles were obtained using a
flattened Pitot probe with a rectangular 0.076 x 2.54 millimeter
inlet. Due to the small opening of the probe and its use near the
wall, two corrections to the Pitot-pressure data were incorporated
in the data reduction.

Since the air density in the inner region of the boundary layer
can be low and since the Pitot probe opening is small, the ratio of
the mean free path of the gas to the rrobe opening can be of a
sufficiently large value so as to place the gas dynamics in the slip
flow regime. Since viscous-flow interaction corrections were not
available for the flattened probe geometry used, a separate calibration
of the probe was conducted in a low-density wind tunnel for Mach
numbers between 0.1 and 0.4 and Reynolds numbers (based on probe
inlet height) between 0.5 and 50. The resulting probe correction is
shown in Figure 4 with the corresponding polynomial curve fit given
in Apyendix A. It should be noted that this correction becomes
significant only in the inner portion of the low Reynolds number profiles.
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The second correction to the Pitot-pressure data resulted from
a probe-wall interference. This effect appears to be caused by the
deflection of the local streamlines around the Pitot-probe tip at
locations near the wall. Since no direct calibration for this probe
effect was known, a correlation was derived which relied on the
shear balance data to provide the correct Mach number gradient
at the wall. It was found that the difference between the Mach
number profile from the Pitot-pressure data and the Mach number
gradient determined from the wall shear could be correlated in terms
of a Reynolds number ratio based on the distance from the wall and
the probe height. The resulting correlation is shown in Figure 5
and the corresponding polynomial curve fit given in Appendix A. A
compilation of adiabatic-wall data measured in zero and mild
favorable- and adverse-pressure-gradient flows was used in obtaining
this correction. 1Its application in the present paper, however, has
been extended to the moderate- and severe-heat-transfer conditions.
The procedure used in applying both corrections to the Pitot pressure
data was to first apply the viscous-flow interaction correction
where applicable followed by the superposition of the probe-wall
interference correction.

In addition to the local Pitot-pressure determination, the local
static pressure through the boundary layer was evaluated. At certain
upstream stations along the test plate the boundary layer extended
into the nonuniform expansion flow ahead of the test rhombus. Thus,
the local static pressure varied with distance from the wall. Since
the flat test plate surface is essentially a plane of symmetry in a
conventional two-dimensional nozzle, the isobars are normal to the
test plate at the wall and the static-pressure variation, if any,
would become apparent only in the outer region of the boundary layer.
Three methods for evaluating this static-pressure variation have been
investigated in conjunction with an adverse-p:essure-gradient test
program conducted in this facility (see Ref. 3). First, the static
pressure was computed analytically from a strictly isentropic method-
of-characteristics nozzle core flow computation. The second method
involved the direct measurement of the static pressure using a cone-
cylinder static-pressure probe. And, in the third approach, the
static pressure extcrnal to the boundary layer in the isentropic
nozzle core flow was determined from adiabatic flow equations using
the ratio of the local Pitot-to-tunnel-supply pressure. A comparison
of data obtained from these three methods pointed out the good agree-
ment between an analytical nozzle core computation and actual
measurements. For this reason, the static-pressure profiles used
for the final analysis were determined by extrapolating the external
static pressure determined from the third method to the measured
wall pressure according to the variation as computed from the
isentropic nozzle core calculations.

The stagnation temperature through the boundary layer was
measured using either the conical equilibrium temperature probe
(Ref. 4), or the fine-wire stagnation temperature probe (Ref. 5),
or both. The conical equilibrium temperature probe, pictured in
Figure 2, consisted of a l0-degree total-angle platinum cone with a
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thermocouple mounted in its base. The cone was supported by a 1.27-
millimeter diameter, 12.7-millimeter-long glass tube which also

served to insulate the cone from the probe support. The measured cone
temperature together with the measured local Mach number and cone
tables provided the necessary information to calculate the local
stagnation and static temperatures (see Ref. 4). A cone recovery
factor equal to the square root of the Prandtl number was assumed,
based on the cone equilibrium temperature.

The fine-wire stagnation temperature probe, pictured in Figure 3,
consisted of a fine wire (0.0254-millimeter-diameter, 3.56-millimeter
long) placed normal to the flow with a chromel-alumel thermocouple
junction at its center. The local stagnation temperature was computed
from the measured wire center and support temperatures and the
corresponding measured Pitot pressure using the empirical equations
given in Reference 5 for predicting the heat exchange to and from the
wire. Using the local Mach number, the local static temperature was
evaluated.

The use of two temperature-probe configurations was based on
several factors. Due to the severe temperature giadients which were
encountered in the inner region of the boundary layer as with the
cold-wall studies, the fine-wire probe was of advantage because of
its small size and spatial resolution. However, since the fine-
wire probe could not withstand high aerodynamic loading, the sturdier
cone probe had to be used for the high Reynolds number runs. Thus,
each probe complemented the other, and for many cases duplicate data
were obtained.

The local wall shear was measured directly in these tests using
two skin-friction balances, one developed at NOL with a cryogenic
cooling capability and the other purchased from the Kistler Instrument
Corporation, Clarence, New York. Both balances are of the self- ;
nulling type whereby a circular floating element is continually i
recentered by a servo-feedback system. The basic design of the NOL
skin-friction balance is described in Reference 6; however, significant
modifications have been made to the basic mechanism since Reference 6
to increase sensitivity and to eliminate pressure and temperature
effects which existed in the earlier model. The balance was designed
for measuring the wall shear in flows with heat transfer and pressure
gradient. Although the balance design included a provision for
cooling the floating surface element for the cold-wall studies, this
mechanism did not operate properly and was not used. Thus, the
balance measurements for the cold-wall studies were obtained with a
floating element at a higher temperature than the wall. The modified
version of the NOL skin-friction balance is pictured in Figure 6.

The Kistler balance, Model No. 322M107, was not designed for cold-
wall conditions and had to be used only under adiabatic wall and
moderate~heat-transfer conditions. Details of the design and
operation of this balance are given in Reference 7.

Heat-transfer measurements were made using a thermopile gage
mounted on the surface of a copper instrumentation port. The gage
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was purchased from the RAF Corporation, Hudscon, New Hampshire, and
had the designated name of Micro-Foil Heat Flow Sensor, Model No.
20463-3. The thermopile consisted of a group of 40 differential
thermocouples connected in series with the hot and cold junctions
located respectively on opposite sides of a thin thermal barrier.

As the heat flowed through the barrier, a temperature difference was
established which was proportional to the heat flux. A gage
calibration was supplied by the manufacturer.

DATA REDUCTION

Simultaneous readings of the tunnel supply pressure and tempera-
ture, the Pitot pressure, the temperature-probe thermocouple outputs,
and the probe location were obtained at each probe location in a
boundary-layer profile. Since the pressure and temperature probes
were not of the same diameter nor mounted exactly at the same y loca-
tion, the temperature data were interpolated to the location of the
pressure probe. Furthermore, in the case of the data taken with the
conical equilibrium temperature probe, temrmperature measurements could
not be taken closer than 0.635 millimeter from the wall and an
interpolation had to be incorporated to match the location of the
Pitot pressure data in this inner region. This interpolation near
the wall was accomplished by fitting a second-order polynomial of
T/Te vs (u/ue) to match the static temperature and velocity conditions

at the wall, at u/ug = 1.0, and at a point one probe diameter away
from the wall.

The static-pressure distribution normal to the wall was
incorporated in the data reduction as well as into profile and
integral parameter definitions. These modifications were necessary
for the correct determination of the total boundary-layer thickness
and boundary-layer flux deficits in that the so-called "ideal" flow
properties (Refs. 8 &and 9) had to be accounted for. These "ideal"
properties, calculated from the local static pressure and the tunnel
supply pressure and temperature, would represent the inviscid flow
if the boundary layer were not present. The modified int:gral para-
meters are defined as

displacement thickness

S
§*! = 1 f (p'u'-pu) dy (1)
p'wu'w o

momentum thicknes

S o
p' = ———l——f 8/.CS pu(u'~u) dy (2)

t '
u
P W W




NOLTR 72-232

energy thickness

p lul

= t
eE —-—1——3— fs pu(u'z—uz) dy (3)
w w O

total enthalpy thickness

h
= t
T L fPlaa - gy (4)

] t
pw uw 3 te

wvhere the primed quantities refer to the "ideal" flow quantities and
§'..s aefined as the distance from the wall where u/u' = 0.995. The
modified integral thicknesses are non-dimensionalized by the "ideal"
properties at the wall because the properties at the edge of the
boundary layer were less consistent and more difficult to define.
(Care should be taken in interpreting the "ideal" properties at the
wall since T'w # T, and u& # 0, but rather these quantities are based

on the inviscid Mach number at the wall, M& , calculated from Po and

Psw’) The modified definitions reduce to the classical definitions

when the static pressure is constant through the boundary layer.

The data reduction for skin friction was based on static
calibrations performed on the shear balances before and/or after
each test run. In the case of heat transfer, the manufacturer's
calibration was accepted. It should be noted that the skin-friction
and heat-transfer measurements were obtained at the instrumentation
port locations whereas prafile data were obtained at a location 7.6
centimeters ahead of each port location. Thus, an interpolation is
necessary to obtain corresponding information at any one location.
This manipulation is left to the reader.

The complete documentation of all profile, skin-friction and
heat-transfer data is provided in Appendices B through D.

DISCUSSION OF DATA

Although a complete analysis of the data is planned for sub-
sequent publication, a brief description of the trends indicated
by the data will be made at this time.

Sample skin-friction data are presented in Figure 7 for the three
heat-transfer conditions. A comparison of the data with the method of
Spalding-Chi (Ref. 10) indicates that for the adiabatic-wall and
moderate-heat-trans ‘er cases the experimental values of C¢ are lower

than predicted by approximately 20 percent, whereas for the severe-
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heat-transfer case the data are approximately 5 percent higher than
predicted. The discrepancy with Spalding-Chi theory for the
adiabatic-wall and moderate-heat-transfer data was reported earlier
in Reference 1 and appears to be a consistent trend. In the case of
the severe-heat-transfer data, the temperature of the floating element
of the skin-friction balance was approximately 100°K above the
cryogenically cooied test-plate temperature. Based on some limited
data, it appears that this temperature difference could have had the
effect of increasing the measured shear by as much as 20 percent.

An analysis of this effect will be made in subsequent reports. One
noted difference in the results of this investigation with those of
NOLTR 69-106 is that the skin friction coefficient varied inversely
with Reg to the .25 power rather than to the 0.10 power as reported
earlier,

Sample correlations of the data using a law-of-the-wall
correlation are shown in Figure 8 for the three heat-transfer
conditions. The law-of-the-wall data are presented using the
Van Driest II (Ref. 11) transformation with the wall shear obtained
from the shear-balance measurements. The data showed good agreement
with the theory for the adiabatic-wall and moderate-heat-transfer
conditions whereas the cold-wall data showed some deviation. (This
discrepancy in the cold-wall data may be a reflection of possible
errors in the measured wall shear as previously discussed.) A law-
of-the-wall correlation by Fernholz (Ref. 12) was investigated
which gave an improved agreement for the adiabatic-wall and moderate-
heat-transfer cases. Extension of this correlation to the severe
heat transfer case showed poorer agreement since curve fits used in
the correlation had to be extrapclated beyond the range of heat-
transfer conditions considered by Ferhnolz.

In terms of a temperature-velocity correlation, Figure 9 shows
the plot of the static-temperature ratio versus velocity ratio for
a sample of the heat-transfer data collected. The data are compared
to the polynomial relation

==a+B () +c (2 (5)
e e e
where
Tw Taw-Tw Te - Naw
A=T— b = T C = T
e e e

The mismatch between data and theory in the outer part of the
boundary layer is characteristic of nozzle-wall boundary-layer flows

and relates to upstream history effects. Near the wall the temperature

gradients correlate well with local heat-transfer measurements.
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The Reynolds analogy correlation shown in Figure 10 Aepicts a
discrepancy in the data correlation which should be explained. The
main point to be noted is that the recovery factor used in determining
the local Stanton number was assumed constant and equal to 0.89,
Preliminary experimental results, described in Reference 3, show that
the recovery factor is not constant but is stromg®¢ affected by up-
stream temperature history. By using a lower recovery factor the
agreement between the data and theory would be more consistent.

The boundary-layer flow in these tests exrerienced both a
pressure history caused by the nozzle expansion and a temperature
history caused by energy removal at the nozzle tlhwroat. Althougn
some trends in the data due to upstream history effects have keen
discussed, a complete understanding of the relative contributions
from pressure and temperature history are still under investigation.
A discussion of these effects together with a more complete analysis
of the results will be made in subseguent reports.

Although the tests performed in this investigation were similar
to those of NOLTR 69- JOG, there were differences in the tests which
reflected differences in the respective test resvlts. One such
difference involved the installation of a coppe. *test plate as
replacement for the stainless steel plate used i.. -he earlier study.
The differences in material and cooling capability of these plates
resulted in differences in upstream wall temperature distributions
which influenced downstream boundary layer results. Other differences
which must be considered result from the improved instrumentation and
probe corrections, the differing instrumentation port locations, and
slightly differing test conditions.

CONCLUSION

A detailed, experimental investigation of the compressible
turbulent boundary layer in a zero-pressure-gradient flow was
conducted in the NOL Boundary Layer Channel at wall-to-adiabatic-wall
temperature ratios of 1.0, 0.8 and 0.25 and momentum thickness
Reynolds numbers from 7,000 to 58,000. Complete, and often redundant,
measurements of the boundary layers were made with Pitot pressure
probes, conical equilibrium and fine-wire stagnation temrerature
probes, shear balances, and a heat-transfer gage. All data has been
reduced and is documented in the report. A brief description of
the results is given with a more complete analysis planned for later
publication.
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APPENDIX A

Pitot-Probe-~Correction Curve Fits

flow

The curves presented in Figure 4 for the Pitot probe-viscous
interaction correlation can be represented by fourth-order

polynomial fits of the form

where

2

= \ 3 4
=C, + CZ(LR) + C3(LR; + C4(LR) + CS(LR)

1

Pt2 (measured)

PR = B
t2 (ideal)
puh
R =(—2)
(ideal)
LR = 1n (R)
h2 = Pitot-probe opening height

The polynomial coefficients for each of the Mach number curves can

. F
AL m

be obtained from the following table:

M Cl C2 C3 C4 C5

0.0 0.994 0.0 0.0 | 0.0 0.0

0.1 1.0262 -2.3196E-2 3.0032E-3 i 9.6124E-4 ~1.9327E-4

0.2 1.0590 -3.9102E-2 ; 4.8422E-3 E 9.5122E-4 | ~-1.9176E-4

0.3 1.0919 -5.5262E-2 5.9327E~3 i 1.1693E-3 -1.8428E-4

0.4 1.1124 -7.1894E-2 - 9.0051E-3 ' 1.5310E-3 -2.8603E-4 é

0.5 1.1265 -8.5767E-2 . 1.3150E-2  1.2599E-3 | -3.1682E-4
>0.6 1.1338 -9.6399E-2 = 1.8926E-2 ~-1.2974E-4 i ~1.9246E~4
L ; i

These fits are valid only in the range of probe height Reynolds

number between .05 and 30. For values between 30. and 100., the

following linear relation was used:

No co
great

wall
of th

P =0.994 + 8.57143E-5 (R-30.)

rrection was made when the pruoe height Reynolds number was
er than 100.

Similarly, the curve presented in Figure 5 for the Pitot probe-
interference correlation was represented by a polynomial curve
e form

_ 2 3 4
DM = c6 + c7 (AL) + CB(AL) + Cg(AL) + ClO(AL)

A-1

ST
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where
M ideal)
(measured)

pup
L= (5 <

PeleH 1 (ideal)
AL = 1n(L)
hl = Overall Pitot-probe height

The polynomial coefficients for this curve are

C6 = 1.89440E-2
C7 = 1.45838E-1
C8 = 3.02638E-1
C9 = 7.37242E-2
C10 = 5.29635E~3
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APPENDIX B
Discussion of Tabular Output

The data described in the text of this report are documented
in the tables of Appendix D. A discussion of these tables will now
be given.

The nozzle contour used in all tests is described by the coordi-
nates in the first table. This contour shape was designed for a
moderate-heat-transfer test condition with P, = 5 atmospheres and
To = 422°K. The Mach number distribution along the test plate was
prescrib:d by the following relation

4.9 - 3.9 (1. - 0.1765 X) (1 - X)2 for 0 < x < X
XT XT

M

T

1 =4,9 for x > X

where xp = 1.397 meters is the beginning of the test rhombus. A
comparison of the design and experimental wall-pressure distributions
along the test plate is given in Table 2 for the design test condi-
tion. For other test conditions, variations from the design condi-
tion can be observed in the data corresponding to differences in

the growth of the boundary layer.

Average wall-temperature distributions are given in Table 3.
The various temperature distributions presented are the result of
the relative efficiency of the heat exchanger used in cooling the
test plate in the nozzle throat ‘region. This heat exchanger was
insufficient in maintaining a constant wall temperature at the throat
region which resulted in an increase in throat wall temperature with
increasing Reynolds number. The temperature distributions are coded
and referenced to run numbers in Table 4. The wall-pressure and
temperature information along the test plate is presented as an aid
to the evaluation of boundary-layer history effects.

Tabic 4 presents the general testing program in terms of profile
run numbers and appropriate testing stations and conditions. Three
groupings of data are presented, corresponding to each of the heat-
transfer conditions. In each grouping, profiles were obtained for
five instrumentation port locations and three supply-pressure
conditions.

The detailed listing of the boundary-layer profile data for
each test run is given in Table 5. The computer nomenclature used
in this output is defined in Appendix C. Skin-friction and heat-
transfer data are similarly documented in Tables 6 and 7. 1In these
last two tables, values of the momentum-thickness Reynolds number
are given which may differ slightly from the values given in the
profile results. This is because the values in Tables 6 and 7 were
interpolated from the profile measurements to compensate for the
different x locations and tunnel conditions.

B-1
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APPENDIX C

Computer Nomenclature

The nomenclature used in the computerized tabular output is

defined as follows:

CF

DP
DE
DPE
DPW
DELP

DSTRP

MPW

PO

PS

PSW

RPW

RTHPW

STA

ST89

2T

Cf = —_ﬂ—_—f = local skin-friction coefficient
t 1
Pw YW
p = density
p' = "ideal" density
Pe
P =
e Pe
t
Pu
§! = boundary layer thickness where u/u' = 0.995
HET = boundary layer displacement thickness
M = local Mach number
— ]
Me —Me
Ml
W
Po = tunnel supply pressure
PS = local static pressure
Pouw = local wall static pressure
é = local wall heat-transfer rate
Pe'le = free-stream Reynolds number
He
' t
Pw Yy = "ideal" free-stream Reynolds number
!
W
pyoul 0' _ w. " .
W W = "jideal" free-stream momentum-thickness
u& Reynolds number
X = axial station
St] = : = Stanton number where
r = 0.89 Py Cp Taw - Tw 332 Ssagvaluated for
c-1

g enge

T B s A

s b, g, g SRR

=
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W —
2]
]

temperature
’ TE = Tg = static temperature
TP = T = "ideal" static temperature
TPE = Té = Te o
' TPW = T& .
r W = T, = wall temperature f
' T = T, = stagnation temperature é
=
TTE = T.o = free-stream stagnation temperature i
b TO = To = tunnel supply temperature é
’ THP = 9 = "jideal" momentum thickness %
THEP = eé = "ideal" energy thickness %'
, THHP = eﬁ = "jdeal" enthalpy thickness %
TAWU = T, = local wall shear ?
b UE = ug = free-stream velocity !
UPW = ué = "jdeal" free-stream velocity ‘
X = X = axial distance in flow direction measured
from nozzle throat
Y = y = distance normal to flat plate surface |
ZPG-AW = abbrev. zero-pressure-gradient adiabatic-wall
ZPG-MHT = abbrev. zero-pressure-gradient moderate
heat transfer
ZPG-CW = abbrev. zero-pressure-gradient severe
heat transfer (cold-wall)
The units used in the computerized tabular output conform to the
International Standard of Units (Ref. C-1) and are defined as:
ATM = atmospheres

CM = centimeters
DEG.K = degrees Kelvin
KG/M3 = kiiigrams per meter cubed

M meters

C-2




M/S
N/M2
W/M2

Two symbols are used in the profile data listing and are defined as:

%%

N are e g e R St AR E AR Ko eI N A RULILC D g ol g7 e AT TS TIRN NP IR ER £ NIV el 2005 P RN I
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meters per second

newtons per meter squared

watts per meter squared

denotes boundary-layer thickness §'

denotes free-stream location

REFERENCE

Mechtly, E. A., "The International System of Units," NASA
sp-7012

C-3
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APPENDIX D

Tabular Data

TABLE 1

NOZZLE CONTOUR COORDINATES

x (m) y (m)
0.0000 0.01077
0.2794 0.02959
0.3810 0.04598
! 0.5588 0.08738
; 0.7366 0.12970
l 0.9144 0.16475
. l.0668 0.18952
! 1.2446 0.21296
o 1.4224 0.23107
| 1.6002 0.24485
| 1.7780 0.25518
; 1.9558 0.26264
‘ 2.1591 0.26838

2.3368 0.27162
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TABLE 2

NOZZLE WALL PRESSURE DISTRIBUTION

P /P x 103
x (meters) Design®¥ © | Experiment

0.000 528.30 -

0.127 194.04 S

0.257 70.02 -

0.385 29.24 =

0.559 11.47 10.68
0.635 8.25 8.00
0.711 6.22 6.04
0.787 | 5.22 4.68
0.864 | 3.97 3.95
0.940 ; 3.32 3.44
1.067 i 2.66 2.67
1.143 ‘ 2.41 2.43
1.194 ‘ 2.31 2.29
1.270 2.20 2.10
1.448 | 2.12 1.99
1.524 2.12 1.99
1.702 l 2.12 2.04
1.778 | 2.12 2.09
1.905 i 2,12 2.04
1.981 s 2.12 2.02
2.057 i 2.12 2.03
2.134 | 2.12 2.05
2,210 : 2.12 2.11
2.286 T 2,12 2.14
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TABLE 4
PROFILE-DATA RUN NUMBERS

ADIABATIC-WALL PROFILE DATA

Temperature Data Taken With Conical Equilibrium Probe
Po (atrﬂS)
1.448 901311 812122 901312
1.702 812131 812132 812133
1.905 812161 812162 901298
2.057 812171 812172 901291
{ [ 2.210 812174 812175 812176
Tﬁ Distribution TD1 TD2 TD3

Temperature Data Taken With Fine-Wire Probe
Py (atms)
X (meters) 10. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>